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★ Coronal mass ejections (CMEs) are powerful explosions of  plasma and magnetic field that is released from the Sun's corona 
and travels through the interplanetary space that can have a significant impact on the interplanetary medium and our planet. 

★ On August 26, 2018, during the declining phase of solar cycle 24, the third-strongest geomagnetic storm (Dst = -175nT)  of the 
cycle occurred due to a CME that erupted from the Sun on August 20, 2018. 

★ Remarkably, this particular event was caused by a slower and smaller CME, which is unusual as fast and large CMEs are 
typically responsible for geomagnetic storms. (e.g. Gopalswamy, 2018). 

★ Previous studies (Gopalswamy et al.2022 and  Chen et al. 2019)  have reported that the flux rope associated with this CME had 
a complicated rotation in the interplanetary medium before it reached Earth, and the high-density structure in the magnetic 
cloud observed at Earth. 

★ In this study, we employ a data-constrained constant-turn flux rope-based 3D Magnetohydrodynamic (MHD) model  (Singh et 
al 2022) to simulate the propagation of this CME through a time-dependent, data-driven ambient solar wind (SW). 

★ We utilize parameters from a graduated cylindrical shell model to constrain the flux rope model, which was obtained by fitting 
coronagraphic observations of the CME, including data from the Heliospheric Imager (HI) on STEREO-A. 

★ Our research highlights the significance of MHD modeling CME propagation to gain a better understanding of the dynamics of 
these events and their impact on the Earth's space environment.

Introduction Results

Methodology
❖ Solar Wind Model : HelioCubed

❖ CME Model : FRiED + Constant-Turn Flux Rope

Fig-1: (Left) Diagram showing the time-dependent inner-heliospheric solar wind model  used in this study (not to scale).We use Air Force Data Assimilative Photospheric Flux Transport 
(ADAPT; Arge et al., 2013) driven Wang-Sheeley-Arge (WSA) coronal model (Arge et al, 2003, 2004), to derive boundary conditions for HelioCubed

★ HelioCubed is a highly parallel, GPU enabled, adaptive 
mesh refinement (AMR) based solver for the hyperbolic, 
Reynolds-averaged, ideal MHD equations in conservative 
form. 

★ Using the recently built Proto framework, It employs 
finite-volume method to solve MHD equations with fourth 
order of precision in space and time on cubed-sphere grids, 
which resolves the polar singularity intrinsic in the spherical 
grid. 

★ Currently, we use the already implemented second order 
finite-volume MHD solver on a spherical grid to solve the 
Ideal MHD equations in the inner heliosphere. 

★ We use the geometry of the FRiED model (Isavnin 2016), which simplifies the CME shape to a croissant-like structure with 
two legs rooted at the center of the Sun,  to simulate flux-rope-based CMEs.

★ To characterize the geometry of the CME, we use the Graduated Cylindrical Shell Model (GCS; Thernisien, 2011) since 
FRiED geometry can be derived from GCS (Singh et al, 2022)

★ To describe the initial magnetic field inside the flux rope, we use the uniform-twist flux rope model (Vandas & Romashets, 
2017) analytic solution.

★ We insert this flux rope into the ambient SW in such a way that the flux rope is initially superimposed with the SW 
background. This superimposition is described in detail by Singh et al., 2020. 

★ Further the model flux rope propagates through the inner heliosphere as an Interplanetary CME. (For more information see 
Singh et al, 2022)

❖ GCS Reconstruction

❖ CME Insertion & Propagation

❖ CME Arrival at Earth
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Fig-2 : (Left) Ambient solar wind radial velocity from HelioCubed at 2018 Aug 22, 06:09 UT (ecliptic plane) . (Right) CME inserted to the ambient solar wind as a constant-turn flux rope 
characterised based on the GCS model fit at the apex hight of the CME at 67.92 Rs (at 2018 Aug 22, 08:09 UT)  

Fig-3 : (Left) Ambient solar wind radial velocity from HelioCubed at 2018 Aug 22, 06:09 UT (ecliptic plane) . (Middle) CME inserted to the ambient solar wind as a constant-turn flux rope 
characterised based on the GCS model fit at the apex height of the CME at 67.92 Rs (at 2018 Aug 22, 08:09 UT) B-theta Component. (Right) Evolved CME Fluxrope in the equatorial plane. 

Fig-4 : Comparison of solar wind + CME simulation with the observation from OMNI database at Earth. Orange: Simulation and Blue : Observation. We will find the orientation of the flux 
rope using Marubashi flux rope fitting and inquire about the speculated complex rotation of the CME.
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