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INTRODUCTION & MOTIVATION

e Solar Energetic Particle (SEPs) events can disrupt
communication satellites and pose radiation hazards on
astronauts [1]

e Reliable early prediction of SEPs is important [1]

e Neural Network (NNs) based prediction models are
promising as they can ingest complex inputs [2]

e NN based binary classification models often suffer from
low reliability [3,4]

e Reliability Calibration is important to convert NN
outcome to true probabillity [3,4]

e SEPs events being rare in nature, model-ensembles are
desirable to estimate prediction uncertainty.

DATASET

e \Ve use both remote sensing and in-situ data as
predictors to forecast occurrence probability of SEP
event.

e Inputs are collected over 3 days (at maximum) prior to
flare onset

e A ground-truth of ‘Event’ is placed if integrated particle
flux (>10 MeV) crosses 5 p.f.u. threshold within 6 hours
from flare onset.

e Predictors in the form of images, time series and scalar
entities.
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Magnetogram video and in-situ parameters, time series to
predict SEP occurrence probability and SEP properties.
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probability and needs to be calibrated to match frequency
of events i.e. to make the outcome reliable.

Large class imbalance between positives and negatives
to train an ensemble of models
10 models: different training + validation sets with
common positives and largely different negatives

We first train the probability prediction branch, freeze all
the weights/biases and use the outcome as weightage to
the loss function of the branch for prediction of SEP
properties

PREDICTING TRUE PROBABILITY OF
SEP-event OCCURRENCE

e \We emphasize that our objective here is not to do just a

binary classification. Instead, we focus on estimating true
probabilities of SEP occurrence.

Quantile (BBQ) [4] method.

test [uncalibrated]

Calibrator [using train]

e \We calibrate each CNN outcome using Bayesian Binning

test [calibrated using train]

includes all flare classes (C, M, X)

MODEL ENSEMBLE Performance on test set
e \We use the following multi-channel Convolutional Neural e We design a test set that is tailored to be
Network (CNN) architecture that Ingests both non-modulated by the solar cycle phase and
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natural consequence of smaller variety of events

flare peak

e Event predictions are less confident in general
compared to Non-event prediction: this could be a

normalised event count (%)

seen by the model-ensemble as compared to the

non-events.
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e The ensemble makes tighter predictions for the test
set data points with SEP occurrence probability =
0.5 as compared to those with probability < 0.5.

e The difference of those two group become higher
for probability weighted regression.
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e Ve calibrate a model-ensemble to predict true probability of SEP occurrence
e True probability along with uncertainty provides enough flexibility to tune the
model outcome to user-specific need.
e Our model-ensemble seems to predict the non-events more confidently as
compared to the events: events are not as well represented by training set

as for non-events

e \We find that adding SEP occurrence probability as weightage in loss
function causes improved forecast of SEP event properties as compared to
simple mean squared error based regression set-up.

Papers (1) data, (2) SEP occurrence & (3) property forecast to be submitted soon
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